
PHYSICAL REVIEW E AUGUST 1998VOLUME 58, NUMBER 2
Electric field induced in cells in the human body when this is exposed
to low-frequency electric fields

Ronold W. P. King and Tai Tsun Wu
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138

~Received 11 March 1998; revised manuscript received 6 May 1998!

A detailed analysis is carried out of the electric field induced in a cell when the body is exposed to an
incident axial electric field at 50–60 Hz. It is shown that the field in a spherical cell is effectively shielded by
the membrane so that the induced field in its interior is negligibly small. It is also shown that the induced
electric field in a cylindrical cell~which is long compared to its radius! is the same as the axial field outside the
cell. In this case, the cell membrane has no shielding effect.@S1063-651X~98!09108-9#

PACS number~s!: 87.50.2a, 87.10.1e
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I. INTRODUCTION

In his paper, Adair@1# states that the ‘‘internal elemen
of a cell, such as the nucleus and the genetic material,
shielded by the resistive membrane and the fields they
subjected to are quite negligible.’’ This statement appl
specifically to spherical cells with a radius of 10mm. No
proof is given, but reference is made to Foster and Sch
@2#. It is the purpose of this paper to show analytically th
the statement is true for small spherical cells, but incorr
for elongated cells like those found in muscle and also
long nerve cells. It is important for biophysicists and bi
medical scientists to recognize this difference and not
sume that the cell membrane shields the interior of all ce
This superficially paradoxical behavior is clarified in a qua
titatively explicit analytical study.

II. BACKGROUND

At frequencies as low as 50–60 Hz or 10–30 kHz,
parts of the human body are conductors, i.e.,s@ve, with
conductivities that range froms;0.02 to 0.85 S/m. The
conductivity of the saline tissue in which the organs are e
bedded iss;0.5 S/m. Furthermore, the body is electrica
extremely short. Accurate formulas are available for the to
axial currentI 1z(z), the current densityJ1z(z), and the elec-
tric field E1z(z) induced in the body when this is exposed
an electromagnetic fieldEz

inc ,By
inc . These are given in Ref

@3# when the arms are in contact with the sides and the b
is far from the earth or standing on it with rubber-sol
shoes. Generalized formulas with the arms raised to
angle are in Ref.@4# and for the electric field induced in th
individual organs in the body in Ref.@5#. These formulas
provide explicit relations forE1z(z)/Ez

inc , whereE1z(z) is
the electric field anywhere in the body including the arm
legs, and head. The next step is to derive relations betw
E1z(z) in the saline tissues of the body andE2z(z) in the
cells embedded in it.

III. SPHERICAL CELL

Consider first the rigorous determination of the elect
field in a small spherical cell embedded in the conduct
tissue withs150.5 S/m in which the fieldE1z(z) is main-
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tained. The cell has a radiusb51026 m. It is bounded by a
thin membrane with the thicknessd;531029 m. The inte-
rior of the cell with radiusa5b2d consists of protoplasm
with s2;0.5 S/m. The conductivity of the membrane in i
resting state issm;1026 S/m. The ratiosm /s1 is the small
quantity

h[
sm

s1
5

1026

0.5
5231026. ~1!

The complete solution for the electric field inside
spherical cell is given in Appendix A. The ratio of the ele
tric field in the cell to that incident from the outside is

E2~z!

E1~z!
5

9h

~215h12h2!22~122h1h2!~a/b!3 . ~2!

Here

S a

bD 3

5S b2d

b D 3

5S 12
d

bD 3

;12
3d

b
~3!

sinced/b!1. With this value andh!1,

E2~z!

E1~z!
5

9h

9h12~122h1h2!~3d/b!
;

9h

9h1~6d/b!

5
1

11~2d/3hb!
. ~4!

For the spherical cell, h5231026 and d/b55
31029/10265531023, so that 2d/3hb51.673103. It fol-
lows that

E2~z!

E1~z!
;

3hb

2d
5

3323102631026

23531029
5631024. ~5!

Hence, the electric fieldE2(z) in the protoplasm in the inte
rior of the spherical cell is negligibly small compared to t
field E1(z) in the saline tissue in which the cell is embedde
The membrane acts as an excellent shield for the interio
2363 © 1998 The American Physical Society
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IV. LONG CELL: NERVES

In addition to small approximately spherical cells, lon
cylindrical cells are common in the human body. When
body is exposed to an external axial electric fieldEz

inc , an
axial currentI z(z) is induced in the body as shown in Re
@3#. At 50–60 Hz, this current depends only on the length
the body and is independent of the conductivity. Howeve
adjusts its current densityJiz(r,z) at any cross sectionz in
accordance with the conductivitiess i of the organs and cells
in that cross section. The associated electric field
Eiz(r,z)5Jiz(r,z)/s i .

Consider a long cylindrical cell that extends fromz5
2h to h. It is enclosed in a thin membrane with the thic
ness d57.531029 m and conductivity sm51026 S/m.
The outside and inside radii of the cell areb51026 m and
a5b2d. The entire cell is embedded in protoplasm with t
conductivity s150.5 S/m. The interior of the cell has th
same conductivitys150.5 S/m. It is exposed to an electr
field E1z(r,z) parallel to the length of the cell. For simplic
ity, let it be assumed that the cell to be studied is located n
the axial maximum of the currentI z(z) and thatE1z(r,z) is
approximately constant over the length of the cell. Unlike
cylindrical surface of the cell along which the boundary co
ditions are straightforward, the ends of the cell presen
complicated problem. Fortunately, the actual shape
structure of the end surfaces are unimportant in determin
the field in the interior of the cell at moderate distances fr
the ends. Accordingly, the end surfaces will be assume
be flat and to consist of the same membrane as the cylin
cal sides. Because of the low conductivity of the membra
the current in the ambient medium turns out radially near
ends to travel around instead of through the cell. Since
cross-sectional areapb2 of the ends is small, the axial cur
rent that enters and leaves the cell through the ends is in
nificant. For simplicity, it will be taken to be zero by chan
ing the conductivity of the membrane at the ends from
small valuesm51026 to 0 S/m. Since the electric field in
cident in the cell is parallel to the cylindrical sides, th
means that no current enters or leaves the cell. The o
current in it is that generated by the electric fieldE2z(r,z)
induced inside the cell.

The model used to determine the electric field in the c
is shown in Fig. 1. The total upward current in the ent
body isI z(z). The current density in the vicinity of the cell i
J1z(z);I z(z)/A, whereA is the cross-sectional area of th
body. At all points, the scalar potential satisfies the equa

¹2f50 ~6!

and the symmetry conditionf(r,2z)52f(r,z) applies.
The boundary conditions are

s1E1z~r,z!52s1

]f~r,z!

]z U
z5h

5H 0, r,a

J1z~r,z!, r.b.

~7!

From Eq.~B12! in Appendix B, withj5d/h5ds1 /sm ,

f1~r.b,z!2f2~r,a,z!2j
]f~r,z!

]r U
r5a

50,
e

f
it

is
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e
-
a
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g
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e
e
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n

2h<z<h, ~8!

2E1z~b,z!5
]f1~r,z!

]r U
r5b

5
]f2~r,z!

]r U
r5a

52E2z~a,z!.

~9!

At distancesr@b, Eq. ~7! gives

]f1~r,z!

]z
52E1z~r,z! ~10!

or

f1~r,z!52zE1z~r,z!. ~11!

V. SOLUTION FOR THE SCALAR POTENTIAL

The condition~11! at large distances suggests the intr
duction of the functionc(r,z) defined as

c~r,z!5H f~r,z!, r,a

f~r,z!1zE1z~r,z!, r.b. ~12!

It follows that

]c~r,6h!

]z
50 for all r ~13!

and

¹2c~r,z!50. ~14!

A solution will be sought in terms of a Fourier series. T
symmetry conditionf(r,2z)52f(r,z) indicates the form
sin(pkz/2h) whenk is a positive integer and the factor 2 i
the denominator follows from Eq.~13!, which requires the
period 4h. Application of Eq.~13! gives

cos
pkz

2h U
z5h

50 or cos
pk

2
50. ~15!

FIG. 1. A long cell~length 2h, outside radiusb, inside radiusa,
and membrane thicknessd) immersed in a conducting medium wit
current densityJ1z(r,z) and electric fieldE1z(r,z)5J1z(r,z)/s1.
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This means thatk is odd, i.e.,k52n11. With

kn[
~2n11!p

2h
, ~16!

the Fourier sine series is

c~r,z!5 (
n50

`

f n~knr!sin knz. ~17!

In the cylindrical coordinatesr,z and with rotational sym-
metry, Eq.~14! gives

H ]2

]r2 1
1

r

]

]r
1

]2

]z2J c~r,z!50, ~18!

so that

H ]2

]r2 1
1

r

]

]r
2kn

2J f n~knr!50. ~19!

The solution of Eq.~19! is

f n~knr!5H const3I 0~knr!, r,a

const3K0~knr!, r.b,
~20!

whereI andK are the modified Bessel functions. Now let

cn5
d

d~knr!
f n~knr!ur5b;a . ~21!

This is continuous atr5b;a. It follows that

f n~knr!55 cn

I 0~knr!

I 08~kna!
, r,a

cn

K0~knr!

K08~knb!
, r.b.

~22!

However, the Bessel functions are insensitive to variation
argument of the orderknd so thatb can be replaced bya.
The application of the membrane condition~8! yieldscn . In
terms ofc(r,z) as defined in Eq.~12!, this is
in

c~b,z!2c~a,z!2j
]c~r,z!

]r U
r5a

5zE1z~r,z!. ~23!

It is now necessary to express the right-hand side in a se
corresponding to Eq.~17! for c(r,z). This is accomplished
by noting that the coefficients are

1

2hE22h

2h

dz zsin knz5
1

hE2h

h

dz zsin knz

5
4h

@~2n11!p#2 sin knzu2h
h

5
~21!n8h

@~2n11!p#2 . ~24!

Hence

z5 (
n50

`
~21!n8h

@~2n11!p#2 sin knz. ~25!

With this value, Eq.~23! gives

cnFK0~kna!

K08~kna!
2

I 0~kna!

I 08~kna!
2jknG5

~21!n8h

@~2n11!p#2 E1z~r,z!.

~26!

With the Wronskian formulaI 08(z)K0(z)2I 0(z)K08(z)51/z,
Eq. ~26! becomes

cnF 1

knaI08~kna!K08~kna!
2jknG5

~21!n8h

@~2n11!p#2 E1z~r,z!.

~27!

SinceI 085I 1 andK0852K1, the final result is

cn52

~21!n4a

~2n11!p
E1z~r,z!I 1~kna!K1~kna!

11jakn
2I 1~kna!K1~kna!

. ~28!

With this, the scalar potentialf(r,z) is
f~r,z!55 2 (
n50

`
~21!n4a

~2n11!p
E1z~r,z!K1~kna!I 0~knr!sin knz

11jakn
2I 1~kna!K1~kna!

,
r,a

2E1z~r,z!F z2 (
n50

`
~21!n4a

~2n11!p
I 1~kna!K0~knr!sin knz

11jakn
2I 1~kna!K1~kna!

G ,
r.b.

~29!



he
d

ld

-

hat

ctric
s a

re-
all
es

ave
ally,

me
r
he

to

2366 PRE 58RONOLD W. P. KING AND TAI TSUN WU
VI. ELECTRIC FIELD INSIDE THE CELL

The electric field inside the cellr,a is given by

E2z~r,z!52
]f~r,z!

]z
, r,a, ~30!

with f(r,z) given by Eq.~29!. This gives

E2z~r,z!

E1z~r,z!
5 (

n50

`
~21!n2a

h
K1~kna!I 0~knr!cosknz

11jakn
2I 1~kna!K1~kna!

, r,a.

~31!

Whenr,a, knr is very small so thatI 0(knr);1. Similarly,
the small-argument formulas forI 1 and K1 can be used.
These areI 1(kna);kna/2 andK1(kna);1/kna. Hence

E2z~r,z!

E1z~r,z!
5

4

p (
n50

`
~21!ncosknz

~2n11!F11
1

2
jakn

2G . ~32!

With

b[
p2

8

ja

h2 , ~33!

E2z~r,z!

E1z~r,z!
5

2

p (
n52`

`
~21!neiknz

~2n11!@11b~2n11!2#
. ~34!

The evaluation of this sum can be carried out with t
help of the following contour integral, which is evaluate
over a large circle in the complex plane:

1

2p i R dz
eiknz

z~114bz2!cospz

52 (
n52`

`
~21!n~2/p!eiknz

~2n11!@11b~2n11!2#

112
cosh~pz/2Abh!

cosh~p/2Ab!
50. ~35!

It follows with Eq. ~34! that

E2z~r,z!

E1z~r,z!
512

cosh~pz/2Abh!

cosh~p/2Ab!
. ~36!

At the center of the cellz50 and withb given by Eq.~33!
and j5ds1 /sm57.53102930.5/102653.7531023 m, it
follows that

E2z~r,z!

E1z~r,z!
512sech

p

2Ab
512sechS hA 2

jaD
512sechS hA 2sm

ads1
D . ~37!

This is the final formula for the ratio of the electric fie
E2z(r,z) in the interiorr,a and near the centerz50 of a
long cell and the incident fieldE1z(r,z) in the ambient me-
dium with the conductivitys1. The membrane has the thick
nessd and the conductivitysm .

Consider a cell with the half-lengthh50.25 m and
radius a51026 m, enclosed in a membrane withd
57.531029 m andsm51026 S/m. The conductivity out-
side and inside the cell iss150.5 S/m. With these values,

E2z~r,z!

E1z~r,z!
512sechS 0.25A 231026

102637.53102930.5
D

512sech~0.2532.33104!

512sech~5.83103!;1. ~38!

For a short cylindrical cell withh5a51026 m,

E2z~r,z!

E1z~r,z!
512sech~102632.33104!5120.9997;0.

~39!

When the cell has a half-lengthh5250a52.531024 m,

E2z~r,z!

E1z~r,z!
512sech~2.53102432.33104!

512sech5.7550.99. ~40!

Thus the electric field inside the cell is the same as t
outside for cells with lengths 2h.0.5 mm. For cells with
lengths comparable to or less than the diameter, the ele
field inside is essentially zero and the membrane acts a
perfect shield.

The numerical calculations up to this point have been
stricted to unmyelinated cells with thin membranes and sm
diameters. However, the formulas apply equally to all typ
of long nerves cells, including the myelinated ones that h
much thicker membranes and larger diameters. Specific
for a myelinated cell with d;20031029 m and a
51025 m, Eq. ~37! gives

E2z~r,z!

E1z~r,z!
512sechS hA 231026

1025323102730.5
D

512sech~1.43103!h. ~41!

With h50.025 m52.5 cm,

E2z~r,z!

E1z~r,z!
512sech35.45128.831021651. ~42!

With h5250a52.531023 m52.5 mm,

E2z~r,z!

E1z~r,z!
512sech3.545120.058;0.94. ~43!

Thus the electric field inside the myelinated cell is the sa
as outside when 2h.5 mm. This is ten times the length fo
the unmyelinated cell, but is no significant restriction for t
long cells of interest here.

The simple formula~37! is independent of the distancez
from the center of the cell. However, it is not applicable
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points near the ends, owing to the approximations mad
the boundary condition on the end surfaces. It can be
sumed that a reasonable estimate of distances from the
where it should not be used in a long cell is whenh2z
<1024 m50.1 mm for an unmyelinated cell and whenh
2z<1 mm for a myelinated cell.

ACKNOWLEDGMENTS

This research was supported in part by the National In
tute of Environmental Health Sciences~NIEHS!, NIH, under
Grant No. 1 R01 ES08051.

APPENDIX A: ANALYTICAL FORMULATION
AND SOLUTION FOR THE ELECTRIC FIELD

IN A SPHERICAL CELL

Consider a spherical cell with inner radiusa and outer
radiusb5a1d, whered is the thickness of the cell wall o
membrane. The conductivity of the saline fluid outside
cell ~region 1! is s150.5 S/m. The conductivity of the pro
toplasm in the interior of the cell~region 2! is s25s1
50.5 S/m. The conductivity of the membrane issm
51026 S/m. Let

h[sm /s15231026. ~A1!

Since the frequency is low, the electric field can be de
mined from the scalar potentialf[f(r ,u):

E52¹f, ¹2f50. ~A2!

The boundary conditions between region 2 (r ,a) and re-
gion m (a,r ,b) and between regionm and region 1 (r
.b) are

E2r5hEmr , f25fm ~r 5a!, ~A3a!

hEmr5E1r , fm5f1 ~r 5b!. ~A3b!

Far from the cell,

E→ ẑE1z
inc , f→2zE1z

inc52rcosu E1z
inc ~r→`!.

~A4!

Since the spherical cell is rotationally symmetric and
incident electric field is reasonably constant at the location
the cell, the spherical coordinatesr ,u can be used and

f5f~r ,u!5 f ~r !cosu. ~A5!

The differential equation forf(r ,u) is

¹2f~r ,u!5
1

r 2sin u

]

]uS sin u
]f

]u D1
1

r 2

]

]r S r 2
]f

]r D50.

~A6!

With Eq. ~A5!, this is readily transformed into

cosuS ]2f

]r 2 1
2

r

] f

]r
2

2

r 2 f D50. ~A7!

This has the solution
in
s-
nd

i-

e

r-

e
f

f 5 f ~r !5C1r 1C2 /r 2, ~A8!

whereC1 and C2 are constants to be determined from t
boundary conditionsf 2(r )5 f m(r ) at r 5a, f m(r )5 f 1(r ) at
r 5b, and f (r )→2rE1z

inc at r→`.
In the three regions,f (r ) must have the forms

f 2~r !5A2r , r ,a

f m~r !5Am8 r 1Am9 /r 2, a,r ,b ~A9!

f 1~r !52rE1z
inc1A1 /r 2, r .b.

The conditions for determining the four constan
A2 ,Am8 ,Am9 ,A1 are obtained from Eqs.~A3a! and~A3b! with
E(r ,u)52@] f (r )/]r #cosu. They are

f 2~a!5 f m~a!,
] f 2~r !

]r
5h

] f m~r !

]r
~r 5a!,

~A10a!

f m~b!5 f 1~b!, h
] f m~r !

]r
5

] f 1~r !

]r
~r 5b!.

~A10b!

With f (r ) as given in Eq.~A9!, the four relations are, forr
5a,

A2a5Am8 a1Am9 /a2,

A25h~Am8 22Am9 /a3!, ~A11a!

and for r 5b,

Am8 b1Am9 /b252bE1z
inc1A1 /b2,

h~Am8 22Am9 /b3!52E1z
inc22A1 /b3. ~A11b!

The solution of these equations forA2, which determines the
field inside the cell (r ,a), is

A25D21U 0 21 21/a3 0

0 2h 2h/a3 0

2E1z
inc 1 1/b3 21/b3

2E1z
inc h 22h/b3 2/b3

U , ~A12!

where

D5U1 21 21/a3 0

1 2h 2h/a3 0

0 1 1/b3 21/b3

0 h 22h/b3 2/b3

U . ~A13!

The evaluation of the matrices gives

D5
1

b3F 2

b3 ~h21!22
1

a3 ~2h215h12!G ~A14!

and
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A25
E1z

inc

D

9h

a3b3 . ~A15!

It follows that

A25E1z
incF 9h

2~a3/b3!~h21!22~2h215h12!G .
~A16!

When Eq.~A16! is substituted in Eq.~A9! with Eq. ~A5!,
the potentialf2 in the spherical cell is obtained explicitly. I
is

f25A2r cosu5A2z, ~A17!

with A2 given by Eq.~A16!. The electric fieldE2(z) in the
spherical cell is obtained with Eq.~A2!.

APPENDIX B: BOUNDARY CONDITIONS

Since the membrane of a cell is extremely thin withd
;7.531029 m and a very poor conductor withsm
;1026 S/m, the boundary conditions relating the elect
field on the outer surfaces to that on the inner surface hav
interesting form. This is best shown for a one-dimensio
model in which the membrane with its conductivitysm is a
thin sheet defined by the coordinates: 0<x<d. The regions
x<0 and x>d are characterized by the conductivitys1
50.5 S/m. At the low frequencies and electrically small
mensions involved, the electric field can be derived from
scalar potentialf in the form E52¹f, wheref satisfies
Laplace’s equation¹2f50. In the one-dimensional case,

Ex52
]f

]x
,

]2f

]x2 50. ~B1!

The solution of the second equation is

f~x!5H A1x1B1 , x,0

A2x1B2 , 0,x,d

A3x1B3 , x.d.
~B2!

The boundary conditions are as follows:f(x) is every-
where continuous~this corresponds to continuity for the tan
gential component of the electric field! and

s1S ]f

]x D
x502

5smS ]f

]x D
x501

,

~B3!

smS ]f

]x D
x5d2

5s1S ]f

]x D
x5d1

.

These are the boundary conditions for the normal compon
of the electric field. When these conditions are applied to
~B2!, with h5sm /s1, the results are
an
l

e

nt
.

B15B2 , A15hA2 , ~B4!

A2d1B25A3d1B3 , hA25A3 . ~B5!

With A25A1 /h, A35A1, andB25B1, it follows that

d

h
A11B15A1d1B3 or B32B15dS 1

h
21DA1 .

~B6!

Let

j[dS 1

h
21D;

d

h
since

1

h
50.53106@1. ~B7!

With d57.531029 m andh5231026,

j53.7531023 m. ~B8!

With Eq. ~B6!, Eq. ~B2! gives

f~d1!2f~02![A1d1B32B15A1S d1
d

h
2d D5

A1d

h
.

~B9!

From Eq.~B2!, A15(]f/]x)x502 andA35(]f/]x)x5d1. It
follows that Eq.~B9! becomes

f~d1!2f~02!5
d

hS ]f

]x D
x502

5jS ]f

]x D
x502

. ~B10!

SinceA35A1,

S ]f

]x D
x5d1

5S ]f

]x D
x502

. ~B11!

In terms of the outward normal to a cylindrical region, th
boundary conditions that connect the conducting region
one side of the membrane with that on the other side are

f12f25j
]f

]r
, S ]f

]r D
1

5S ]f

]r D
2

. ~B12!

Herej53.7531023 m. Note that Eq.~B12! relates the sca-
lar potential and its normal derivative outside the cell
rectly to these quantities inside the cell. The membrane
involved only in the factorj.

In applying these conditions to a long cylindrical cell wi
a radiusb51026 m, it is interesting to note that the deriva
tive ]f/]r is taken atr5b and r5a5b2d. This means
that ]r is a small change inr at r5b51026 m. In other
words,]r has a magnitude smaller thanb. In the first con-
dition in Eq. ~B12!, the right-hand side has the factorj
51/267 multiplied by a factor greater than (1/]r)r;b;105.
Clearly, the potential differencef12f2 is a large quantity.
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